Cours de français gratuitsRecevoir 1 leçon gratuite chaque semaine // Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés

100% gratuit !
[Avantages]

  • Accueil
  • Accès rapides
  • Imprimer
  • Livre d'or
  • Plan du site
  • Recommander
  • Signaler un bug
  • Faire un lien

  • Comme des milliers de personnes, recevez gratuitement chaque semaine une leçon de français !

    > Recommandés:
    -Jeux gratuits
    -Nos autres sites
       



    Nombre irrationnel

    Cours gratuits > Forum > Forum maths || En bas

    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Nombre irrationnel
    Message de chmaykel posté le 30-09-2018 à 03:52:09 (S | E | F)
    Bonjour,

    Je travaille sur une série de TD et je n’arrive pas à trouver la réponse à la question suivante :

    Prouver par contradiction que la somme d'un nombre rationnel et d'un nombre irrationnel est irrationnel ??
    Toute aide, indice, explication est grandement apprécie

    Merci d’avance

    -------------------
    Modifié par chmaykel le 30-09-2018 04:36




    Réponse : Nombre irrationnel de puente17, postée le 30-09-2018 à 13:38:59 (S | E)
    Bonjour,

    Q est un corps et donc en particulier un groupe pour l'addition. Ceci devrait vous permettre de conclure.



    Réponse : Nombre irrationnel de puente17, postée le 01-10-2018 à 14:24:46 (S | E)
    Re-bonjour,

    disons que la différence de deux rationnels est un rationnel et donc ici il y aurait une contradiction.
    Faites un raisonnement par l'absurde:
    Si q +i = q' alors on aurait q - q' = i (avec q et q' rationnels et i irrationnel).



    Réponse : Nombre irrationnel de wab51, postée le 02-10-2018 à 15:19:38 (S | E)

    Bonjour
    Etant donnée que la question est précisément bien accompagnée d'une indication de raisonnement à suivre "prouver par contradiction ",il me semble bien de rappeler ce principe de raisonnement logique en maths dit "principe du raisonnement par l'absurde ":Pour démontrer qu'une proposition P est vraie ,on suppose que la proposition (non P)est vraie et on montre alors que cette hypothèse conduit à une contradiction ,d'une part
    et d'autre part de savoir qu'est ce un nombre rationnel? ou irrationnel? :Tout nombre qui peut s'écrire sous la forme d'une fraction a/b (d'un quotient) où a et b sont deux entiers relatifs avec b≠0 est un nombre rationnel.
    Explications :
    Donc pour montrer (prouver) que la proposition P:" la somme d'un nombre rationnel et d'un nombre irrationnel est un un nombre irrationnel"?
    1)Appliquer le principe par l'absurde :pour cela ,on suppose que la proposition (non P)est vraie c'est à dire que "la somme d'un rationnel a/b et d'un irrationnel x est rationnel m/n ,ce qui s'écrit (a/b)+x =m/n (voire que ce n'est qu'une équation du 1er degré en x d'où x=? .Que peut-on conclure sur le nombre x,est-il rationnel? ou irrationnel?ce résultat n'est-il pas en contradiction avec l'hypothèse que x était à priori supposé comme étant un nombre irrationnel) .Merci à tous



    -------------------
    Modifié par wab51 le 02-10-2018 22:38






    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Cours gratuits > Forum > Forum maths

     


    > INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Recevez une leçon par semaine | Exercices | Aide/Contact

    > COURS ET EXERCICES : Abréviations | Accords | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Démonstratifs | Ecole | Etre | Exclamations | Famille | Faux amis | Français Langue Etrangère / Langue Seconde |Films | Formation | Futur | Fêtes | Genre | Goûts | Grammaire | Grands débutants | Guide | Géographie | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Maladies | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Nombres | Noms | Nourriture | Négations | Opinion | Ordres | Orthographe | Participes | Particules | Passif | Passé | Pays | Pluriel | Politesse | Ponctuation | Possession | Poèmes | Pronominaux | Pronoms | Prononciation | Proverbes | Prépositions | Présent | Présenter | Quantité | Question | Relatives | Sports | Style direct | Subjonctif | Subordonnées | Synonymes | Temps | Tests de niveau | Tous/Tout | Traductions | Travail | Téléphone | Vidéo | Vie quotidienne | Villes | Voitures | Voyages | Vêtements

    > INSEREZ UN PEU DE FRANÇAIS DANS VOTRE VIE QUOTIDIENNE ! Rejoignez-nous gratuitement sur les réseaux :
    Instagram | Facebook | Twitter | RSS | Linkedin | Email

    > NOS AUTRES SITES GRATUITS : Cours d'anglais | Cours de mathématiques | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provencal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

    > Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] [Plan du site] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
    | Cours et exercices de français 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès. | Livre d'or | Partager sur les réseaux