Cours de français gratuitsRecevoir 1 leçon gratuite chaque semaine // Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés

100% gratuit !
[Avantages]

  • Accueil
  • Accès rapides
  • Imprimer
  • Livre d'or
  • Plan du site
  • Recommander
  • Signaler un bug
  • Faire un lien

  • Comme des milliers de personnes, recevez gratuitement chaque semaine une leçon de français !

    > Recommandés:
    -Jeux gratuits
    -Nos autres sites
       



    Méthode de newton - equation f(x)=0

    Cours gratuits > Forum > Forum maths || En bas

    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Méthode de newton - equation f(x)=0
    Message de nate128 posté le 27-02-2015 à 19:25:03 (S | E | F)
    Bonsoir !
    J
    'ai un exercice de maths à faire et je ne comprends vraiment rien du tout, je ne sais pas comment faire. Pouvez-vous m'éclairer s'il vous plaît ?
    Merci pour vos réponses.

    Voici l’énoncé :
    Méthode de Newton : les fonctions dérivables sont assimilables à leur tangente, aux voisinage du point de tangence, à condition que le nombre dérivé ne varie pas trop sur ce voisinage.
    Supposons que l’on ait identifié un intervalle I qui contient une solution, notée a, de l’équation f(x)=0, où f est une fonction dérivable. Prenons une valeur x0 dans d’intervalle I qui servira de première approximation de a.
    (cf image) Lien internet

    On construit une nouvelle approximation x1 de a de la façon suivante :
    *on considère la tangente T0 au point de la courbe de f d’abscisse x0.
    *x1 est l’abscisse du point d’intersection de T0 avec l’axe des abscisses.
    On construit x2 en prenant pour valeur de départ x1 et en réitérant le procédé précédent.
    Questions :
    1. Soit f une fonction derivable sur I dont la dérivée ne s’annule pas sur I. Soit x0 appartient à I. Montrer que si l’on applique la méthode de Newton à f avec x0 comme valeur initiale, alors x1=x0- f(x0)/f’(x0)
    2. Application. On cherche une approximation de racine de 5, solution de l’équation x^2-5=0. Soit f(x)= x^2-5, définie sur R.
    (a)Soit x0=100. Calculer x1, puis calculez x2 en prenant x1 comme valeur de départ.
    (b)Soit n appartient à N. Si l’on appelle xn la valeur de départ, montrer que la nouvelle approximation xn+1 de la solution de l’équation f(x)=0 obtenue par la méthode de Newton vérifie : xn+1 =1/2 ( xn + 5/xn)
    (c) Par comparaison avec la valeur de racine de 5 donnée par votre calculatrice, en partant de x0=100, à partir de quelle valeur de n obtient-on que valeur absolue de (xn- racine de 5)


    Réponse: Méthode de newton - equation f(x)=0 de nate128, postée le 28-02-2015 à 12:51:33 (S | E)
    Bonjour !

    Merci pour votre réponse :D
    Pour la a), j'ai trouvé x1=50,025 et x2= 25,0625
    Pour la b), j'ai réussi à démontrer ce qui est demandé
    Pour la c), j'ai utilisé la même méthode et je suis arrivée à x9-racinede5 =0,000002, donc j'imagine que c'est à x10 la réponse, non ?


    Pour la 3, j'ai trouvé:

    x1=1
    x2=0
    x3=1
    x4=0

    Du coup, on remarque que c'est 0 à x0, puis 1 à x1, puis 0 à x2, donc les xn pairs valent 0 et les xn impairs valent 1... est-ce que c'est bien ça ?

    Merci d'avance ^^



    Réponse: Méthode de newton - equation f(x)=0 de nate128, postée le 28-02-2015 à 13:26:47 (S | E)
    En effet, la question 3 n'apparait pas mais je l'avais postée...
    C'était :
    3. On considère que cette fois l’équation x^3-2x+2=0 et la fonction g(x)= x^3-2x+2 de courbe représentative Cg dans un repère donné.
    (a)Calculez les termes x1, x2, x3, x4, obtenus en prenant x0=0 et en appliquant la méthode de Newton à la fonction g. Que constatez-vous ?
    (b)Illustrez ce phenomena grapiquement en représentant graphiquement la fonction g sur [-2 ;2] ainsi que les tangentes aux points de Cg d’abscisse x0 et x1 .



    Réponse: Méthode de newton - equation f(x)=0 de nate128, postée le 28-02-2015 à 15:45:21 (S | E)
    Merci :D je ne sais pas par contrer comment "illustrer ce phénomène graphiquement" ( dernière question), pouvez-vous m'aider s'il vous plaît ? ^^



    Réponse: Méthode de newton - equation f(x)=0 de nate128, postée le 28-02-2015 à 19:10:30 (S | E)
    Merci beaucoup pour votre aide, bonne soirée !




    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Cours gratuits > Forum > Forum maths








     


    > INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Recevez une leçon par semaine | Exercices | Aide/Contact

    > COURS ET EXERCICES : Abréviations | Accords | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Démonstratifs | Ecole | Etre | Exclamations | Famille | Faux amis | Français Langue Etrangère / Langue Seconde |Films | Formation | Futur | Fêtes | Genre | Goûts | Grammaire | Grands débutants | Guide | Géographie | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Maladies | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Nombres | Noms | Nourriture | Négations | Opinion | Ordres | Orthographe | Participes | Particules | Passif | Passé | Pays | Pluriel | Politesse | Ponctuation | Possession | Poèmes | Pronominaux | Pronoms | Prononciation | Proverbes | Prépositions | Présent | Présenter | Quantité | Question | Relatives | Sports | Style direct | Subjonctif | Subordonnées | Synonymes | Temps | Tests de niveau | Tous/Tout | Traductions | Travail | Téléphone | Vidéo | Vie quotidienne | Villes | Voitures | Voyages | Vêtements

    > INSEREZ UN PEU DE FRANÇAIS DANS VOTRE VIE QUOTIDIENNE ! Rejoignez-nous gratuitement sur les réseaux :
    Instagram | Facebook | Twitter | RSS | Linkedin | Email

    > NOS AUTRES SITES GRATUITS : Cours d'anglais | Cours de mathématiques | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provencal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

    > Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] [Plan du site] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
    | Cours et exercices de français 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès. | Livre d'or | Partager sur les réseaux